
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 83
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

EXPLAINING THE WHY-NOT QUESTIONS IN TOP-K QUERY
EXECUTION

Roopa Lakshmi G, Madhu Shalini R, Nethra J, Kousika.N
UG Scholar, Assistant Professor

Dept of Computer Science and Engineering,
Sri Krishna College of Engineering and Technology

kousika@skcet.ac.in

Abstract
 In recent days, almost in all fields the
data is digitalized. The enormous amount of
data generates another set of data in turn. A
more specialized database systems are
required to manage this set of data, thus
enabling efficient fetching of data whenever
needed .Due to the fact that the existing
database systems are increasingly more
difficult to use, improving the quality and the
usability of database systems has gained
tremendous momentum over the last few
years. In particular, the feature of explaining
why some expected tuples are missing in the
result of a query has received more attention
.To approach this problem, we use the query-
refinement method. That is, when the original
top-k SQL query and a set of missing tuples
are given as inputs, our algorithms return to
the user a refined query that includes both the
missing tuples and the original query results
and the penalty will be calculated for getting
the expected or the missing tuple. Also the
non-numerical values are internally
converted into numerical values to get the
tuples based on non-numerical entities in the
database table.

Keywords- top-k query, missing tuples, SQL

1 INTRODUCTION

After decades of effort working on
database performance, recently the database
research community has paid more attention to
the issue of database usability, i.e., how to

make database systems and database
applications more user friendly. Among all the
studies that focus on improving database
usability (e.g., keyword search, form-based
search, query recommendation and query auto-
completion), the feature of explaining why
some expected tuples are missing in the result
of a query, or the so-called “why-not?” feature,
is gaining momentum.

A why-not question is being posed when a user
wants to know why his/her expected tuples do
not show up in the query result. Currently, end
users cannot directly examine the dataset to
determine “why-not?” because the query
interface (e.g., web forms) restricts the types of
query that they can express. When end users
query the data through a database application
and ask “why-not?” but do not find any means
to get an explanation through the query
interface, that would easily cause them to throw
up their hands and walk away from the tool
forever—the worst result that nobody,
especially the database application developers
who have spent months to build the database
applications, want to see. Unfortunately,
supporting the feature of explaining missing
answers requires deep knowledge of various
database query evaluation algorithms, which is
beyond the capabilities of most database
application developers. In view of this,
recently, the database community has started to
research techniques to answer why-not
questions on various query types.
In this paper, we study the problem of
answering why-not top-k query in SQL .To

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 84
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

address the problem of answering why-not
questions on top-k SQL queries, we employ the
query refinement approach. Generally, the
original SQL query and a set of missing tuples
are given as inputs. This approach will return to
the user a refined query whose result includes
the missing tuples as well as the original query
results.

2 RELATED WORKS

A common scenario faced by SQL
programmers involves asking why one or more
tuples are missing from the results of a query.
One might wonder why, for instance, the result
of a query is empty or why a query did not
return certain tuples. In the case when queries
are used to define multiple views, one may ask
why, for instance, an employee information is
missing from both the employee register and
the payroll views. Often, the first reaction of
programmers is to review the query itself since
the explanation could be that a filter is too
restrictive, or an inner-join should be an outer-
join. However, if the expressions in the queries
appear to be correct, then the next step is
exploring the data sources to figure if data that
maybe combined to yield the desired tuples are
indeed there. The work was proposed to answer
the Why not question in the execution of SPJ
queries. This answers the why not question by
telling that which query operator eliminated the
desired tuple. It does not give the query to get
that tuple. A work was proposed to tell why the
expected tuples are missing in the SPJ query
execution. It gives the user reason why tuple is
missing and it also tells how to modify the
query in order to get the expected tuple. Later
the work was expanded to tell why the
expected tuples are missing in the SPJA query
execution. It gives the reason why the tuples
are missing and also it tells how to modify the
data to get the expected tuples. We can also
conquer the why not questions and it was
proposed to tell why the expected tuples are
missing in the SPJA query. It adopts the query
refinement approach to answer the question. It
tells how to modify the query in order to get the
expected tuple like few editing operations in
the original query. Missing answers to top-K
queries gives the solution to why not questions

in the execution of non-SQL queries.ie. Normal
Queries.

3 PROPOSED WORK

In proposed system user can give a SQL
query as input. The system includes Selection,
Projection, Join, Union and Aggregation
(SPJUA) query operations. After execution of
query, if the user expected answer is not in
query result, then user can ask a why-not
question for expected result. In a Why-Not
Top-K Question algorithm the weighting value
is calculated for an expected result. The
Weighting value is used for the highest
preference of user expected tuples which limits
its practicability. In a Why-Not Top-K
Dominating Question algorithm there is no
need to specify the weighting value. These
algorithms are able to return high quality
explanations efficiently. Then Refined Query is
generated for user expected answer. The
Conquer method generates the refined query by
modifying the predicates value which is
provided by user in the query. The non-
numerical values are internally converted into
numerical values

3.1 Original Query Processing
The user given query is initially executed to get
the results. From the result the user can find the
missing or expected tuple.
3.2 Analysing the result
The original query result is analysed in order to
decide the missing tuple or an expected tuple.
The tuple can be any tuple in the table except
the one in original query result.
3.3. Editing the original query
The original query is modified repeatedly in
order to get the expected tuple in the result.The
editing operations are done in the SPJA
constructs or in the k-value or in the w-vector..
3.4. Penalty Calculation
Once the query is edited with some changes, it
is executed and the penalty for the respected
query is calculated. Penalty gives the amount of
effort spent in modifying the original query in
order the get the expected tuple into the result
set.
3.5. Returning the Refined Query

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 85
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Once all the editing operations are made and
the query is executed, the query with expected
tuple is taken and the penalty for the respective
query is calculated. The algorithm will find the
query with least penalty (i.e., query with least
cost of editing) and gives it as an output along
with the penalty.

4 IMPLEMENTATION

The algorithm gives the user 4 editing
operations say

1. Modifying the SPJA constructs
2. Modifying the K value
3. Modifying the Weight value
4. Modifying all

The user specifies the type of modification to
be done on the query.

4.1 Modifying the SPJA constructs
The SPJA constructs can be modified either by
changing the constant value in the where clause
or by adding a selection predicate. The
algorithm checks if the expected tuple is
present in the query result . If not, the constant
value in the where clause is modified until the
query result has the expected tuple.The
expected tuple may or may not occur since it is
based on other conditions like k-value and w-
vector.
4.2 Modifying the k-value
In this case, the k- value is modified until the
expected tuple is included in the query result.
k-value determines the number of tuples that
has to be included in the result. k-value can
take the maximum value of total number of
tuples in the dataset.
4.3 Modifying the weight value
The weight value determines the preferences
for each case i.e, SPJA constructs, k-value and
w-vector. The weight value ranges from 0.1-
0.9. The weight value is modified until the
expected the expected tuple appears in the
query result.
Choice Preferences (SPJ, k-value,

weightings)
Modify
SPJA

Spj=0.1,k=0.45,w=0.45

Modify k -
value

Spj=0.45,k=0.1,w=0.45

Modify w-
value

Spj=0.45,k=0.45,w=0.1

Modify all Spj=0.33,k=0.33,w=0.33

4.4 Modifying all
In this case, all the values (Spj constructs, k-
value and weight value) are modified to get the
expected tuple. The original query is modified
until the expected tuple occurs in the result.
The probability of getting the expected tuple is
1 in this case. This case is considered to be
better than other cases because we are sure
about getting the expected tuple in the resultant
query.
Finally, the cost for getting the expected tuple
and penalty for changing the original query is
calculated and the refined query is returned.
From the refined query, the user can identify
which factor has eliminated the expected tuple
and also why not the expected tuple did not
appear in the original query result.

Penalty= λspj* Δspj + λk*Δk + λw*Δw
where
 λspj= the current value of spj
 Δspj= difference between the current value and
previous value of spj
 λk = the current value of k
 Δk= difference between the current value and
previous value of k-value
 λw = the current value of weight
 Δw= difference between the current value and
previous value of weight

5 ALGORITHM

Input:

Original query and the expected tuple
1: Obtain QS0 and j value.
2: if QS0 does not exist then
3: return “cannot answer the why-not
question”;
4: end if
5: switch(choice)
6: case 1:
7: SPJA constructs are changed.
8: if Q_result equal to j then
9: calculate penalty;
10: if penalty <=min_penalty then

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 86
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

11: min_penalty = penalty;
12: end if
13: end if
14: Return query with min_penalty
15:case 2:
16: k value alone is changed
17: if Q_result equal to j then
18: calculate penalty;
19: if penalty <=max_penalty then
20: max_penalty = penalty;
21: end if
22: end if
23: Return query with min_penalty
24:case 3:
25: weight values are changed
26: if Q_result equal to j then
27: calculate penalty;
28: if penalty <=max_penalty then
29: max_penalty = penalty;
30: end if
31: end if
 32: Return query with min_penalty
33:case 4:
34: all are changed randomly
35: if Q_result equal to j then
36: calculate penalty;
37: if penalty <=max_penalty then
38: max_penalty = penalty;
39: end if
40: end if
 41: Return query with min penalty

5.1 INPUT TABLES
 Table 1

ID NAME

P1 Alice

P2 Bob

P3 Chandler

P4 Daniel

P5 Eagle

P6 Fabio

P7 Gary

P8 Henry

Table 2
ID A B C

P1 90 400 80

P2 60 290 60

P3 90 200 100

P4 50 300 70

P5 80 100 210

P6 50 250 70

P7 70 280 50

P8 100 500 100

Table 3
ID D E F
P1 60 200 70
P2 100 250 90
P3 70 280 80
P4 90 300 90
P7 80 300 100
P8 60 200 60

5.2 OUTPUT

Fig 1

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 87
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Fig 2

Fig 3

Fig 4

Fig 5

Fig 6

Fig 7

Fig 8

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 88
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Fig 9

6 CONCLUSION
Thus we have studied the problem of

answering why-not questions on top-k SQL
queries. Our target is to give an explanation to a
user who is wondering why his/her expected
answers are missing in the query result. We
return to the user a refined query that can
include the missing expected answers back to
the result. The non-numerical values are
internally converted into numerical values to
search in the database.

7.REFERENCES

1. S.AGARWAL, S.CHAUDHURI,and
G.DAS,”dbxplorer: A system for keyword-
based search over rational databases”, in PROC.
18th Int.Conf.Data eng.,2002,pp.5-16.

2. H.WU,G.LI,C.LI,AND L.ZHOU,”SEAFORM;
search -as -you -type –in forms”, in Proc.VLDB
Endowment, 2010,vol. 3, no. 2,pp. 1597-1568.

3. J.Akbarnejad,G.chatzopoulou,M.EIRINAKI,S.K
OSHY,S.MITTAL,D.ON,N.POLYZOTIS,AND
J.S.V. VARMAN,”SQL QueRIE
RECOMMENDATIONS”, in proc . VLDB
endowment, 2010,vol.3, no. 2,pp. 1597-1600.

4. M.B.N.Khoussainova, Y.C.kwon and
DD.SUCIU,”snipsuggest: context-aware
autocompletion for SQL,” IN PROC. Vldb
ENDOWMENT,2010,VOL.4,NO.1,PP.22-33
A.CHAPMAN AND H.JAGADISH, “WHY
NOT?” IN PROC . ACM SIGMOD
int.conf.manage.data,2009,pp. 523-534.

5. J.Huang ,T.chen,A-H.DOAN,and
j.f.naughton,”on the provenance of non-answers

to queries over extracted data,” in proc VLDDB,
2008,PP.736-747.

6. M.HERCHEL AND M.A.HERNANDEZ,”
EXPLAINING MISSING ANSWERS TO
SPJUA QUERIES”, IN PROC VLBD , 2010,
PP.185-196

7. Q.T.TRAN AND C-Y.CHAN, “HOW TO
CONQUER WHY NOT QUESTIONS”,
PROC.VLDB,2010,PP.15-26

8. Z.HE AND E.LO,”ANSWERING WHY NOT
QUESTIONS ON TOP K QUERIES,” IN
PROC .IEEE 28TH INT.CONF.DATA ENG.,
2012 PP 750-761

9. I.MD.SAiful,Z. RUI , AND L.CHENGFEI, “ON
ANSWERING WHY NOT QUESTIONS IN
REVERSE SKYLINE QUERIS”,IN
PROC.IEEE 28TH INT.CONF DATA ENG.,
2013,PP.973-984.

10. Z.HE AND E.O, “ANSWERING WHY NOT
QUESTIONS ON TOP K QUERY”,IEEE
TRANS KNOWL. DATA ENG.,
VOL.26,NO.6,PP.1300-1315,JUN.2014.

11. A.METRO,”SEAVE: A MECHANISM FOR
VERIFYING USER PRE SUPPOSITIONS IN
QUERY SYSTEMS”, ACM TRANS.
INF.SYST.,VOL 4,NO 4,PP 312-330,1986.

12. A.METRO,”QUERY GENERALIZATION: A
METHOD FOR INTEPRETING NULL
ANSWERS”, IN PROC. 1ST INT INT EXPERT
DATABASE WORKSHOP,1984,PP 597-616

13. F.ZAO, K-L T.G.DAS, AND A.K.H.TUNG,”
CALL TO ORDER ; A HIERARCHICAL
BROWSING APPROACH TO ELICATING
USERS “PREFERENCES?”, IN PROC . ACM
SIGMOD INT.CONF.DATA
ENG.,2010,PP.365-376.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 89
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

14. A.VLACHOU, C.DOULKERIDIS,
Y.KOTIDIS, AND K.NORVAG,”REVERSE
TOP K QUERIES “, IN PROC IEEE 28TH INT.
CONF. DATA ENG ., 2010,PP 365-376

IJSER

http://www.ijser.org/

